Exam ID

Candidates must write the Set No. on the title page of the answer book.

DAV PUBLIC SCHOOLS, ODISHA ZONE-I PA-II EXAMINATION, 2021-22

- Check the question paper contains 8 printed pages.
- Set number given on the right hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains 55 questions.

CLASS- XI SUBJECT-PHYSICS (042)

Time- 90 Minutes General Instructions:

Maximum Marks – 35

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

$$\begin{array}{l} c = 3 \times 10^8 \ \text{m/s} \\ h = 6.63 \times 10^{-34} \ \text{Js} \\ e = 1.6 \times 10^{-19} \ \text{C} \\ \mu_0 = 4\pi \times 10^{-7} \ \text{Tm/Amp} \\ \epsilon_0 = 8.854 \times 10^{-12} \textit{C}^2 \textit{N}^{-1} \textit{m}^{-2} \\ \frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \textit{Nm}^2 \textit{C}^{-2} \\ m_e = 9.1 \times 10^{-31} \ \text{kg} \\ \text{mass of neutron} = 1.675 \times 10^{-27} \ \text{kg} \\ \text{Mass of proton} = 1.673 \times 10^{-27} \ \text{kg} \\ \text{Avogadro's number} = 6.023 \times 10^{23} \ \text{per gm mole} \\ \text{Boltzmann constant} = 1.38 \times 10^{-23} \ \text{J/K} \end{array}$$

SECTION-A

This section consists of 25 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions is attempted, ONLY first 20 will be considered for evaluation.

Q1. The ratio of strength of gravitational force, weak force, electromagnetic force & nuclear force is

(A)	$1:10^{13}$	1036	1 1 3 8
ΙΔ	11.1111	. 11150.	1 (150
(1)	,,,,,	.10 .	LU

(B)
$$1:10^{25}:10^{36}:10^{38}$$

(C)
$$1:10^{25}:10^{42}:10^{38}$$

(D)
$$1:10^{25}:10^{36}:10^{25}$$

Q2. The number of significant figures in 300 is

Q3. A vector $\vec{P}=3\hat{\imath}-2\hat{\jmath}+a\hat{k}$ is perpendicular to the vector $\vec{Q}=2\hat{\imath}+\hat{\jmath}-\hat{k}$. The value of a is

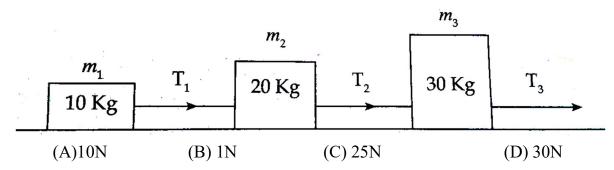
Q4. The variation of its displacement, x with time (in seconds) is given by $x = (t^3 - 2t - 10)$ m. The velocity of the particle at t = 4s, is

$$(B) 50 \text{m/s}$$

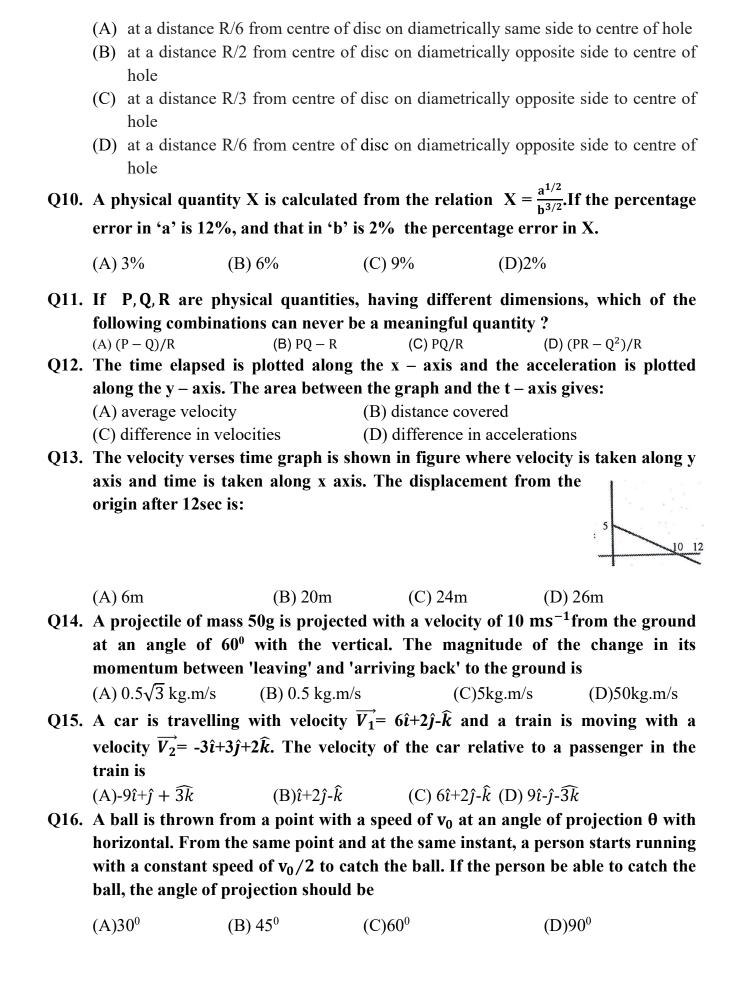
Q5. If momentum decreases by 20%, K.E. will decrease by

Q6. What is the torque of the force $\vec{F} = 2\hat{\imath} - 3\hat{\jmath} + 4\hat{k}$ N acting at the point $\vec{r} = 3\hat{\imath} + 2\hat{\jmath} + 3\hat{k}$ m about origin?

$$(A) - 6\hat{i} + 6\hat{j} - 12\hat{k}$$


(B)
$$-17\hat{i} + 6\hat{j} + 13\hat{k}$$

(C)
$$6\hat{i} - 6\hat{j} + 12\hat{k}$$
 (D)


$$17\hat{i} - 6\hat{j} - 13\hat{k}$$

Q7. The radii of two planets are R and 2R respectively and their densities ρ and $\rho/2$ respectively. What is the ratio of acceleration due to gravity at their surface

Q8. Three blocks are connected as shown on a horizontal frictionless table, and pulled to the right with a force of $T_3 = 60N$. The value of tension T_2 is

Q9. From a uniform disc radius R a circular hole of radius R/2 cut out . The center of hole is R/2 from the center of the original disc. The center of mass of the resulting flat body lies

PA-II/PHY-XI/SET-1 Page3of 8

	through its centre of mass and perpendicular to its length is:				
	$(A)\frac{L}{\sqrt{12}}$	(B) $\frac{L^2}{12}$	(C) $\frac{L^2}{\sqrt{3}}$	(D) $\frac{L}{\sqrt{2}}$	
Q18.	A ballet dancer stre	tches her hands ou	ut while dancin	g. This resu	ılts in :
	(A) an increase in l	ner moment of iner	tia but decrease	in her angul	ar velocity
	(B) a decrease in h	er moment of inert	ia but an increas	se in her ang	ular velocity
	(C) a decrease in b	oth her moment of	inertia as well a	as her angula	r velocity
	(D) an increase in b	ooth her moment of	f inertia as well	as her angul	ar velocity
Q19.	If spheres of same n	naterial and same	radius r are to	ouching each	other, then that
	the gravitational for	ce between them	is:		
	(A)directly proportion	nal to r ²	(B)directly pro	oportional to	r^4
	(C)inversely proportion	onal to r ²	(D)inversely p	proportional	to r ⁴
Q20.	An object of mass m, is released from a point at a height H above the surface of			ve the surface of	
	the earth. Its velocit	y (v), when it strik	kes the earth's	surface, is g	iven by:
	(M = mass of earth,	R = radius of eart	$\mathbf{r} + \mathbf{R} + \mathbf{R}$	H)	
	$(A) v = \left[2 GM \left(\frac{1}{R} - \frac{1}{R} \right) \right]$	$\left[\frac{1}{r}\right]^2$	$(B)v = \left[2 GM\right]$	$M\left(\frac{1}{R} - \frac{1}{r}\right)^{1/3}$	3
	(C) 0		(D) $v = \left[2 G \right]$	(1/1	
Q21.	A ball, whose kinetic				to the horizontal.
	The kinetic energy of	of the ball at the h	ighest point of	its flight is	
	(A) E	(B)E/ $\sqrt{2}$	(C)H	E/2	(D)E/4
Q22.	A body is initially a	at rest. It underg	oes one-dimen	sional moti	on with constant
	acceleration. The	power delivered	l to it at t	ime t is	proportional to
		(B) t			$(D)t^2$
Q23.	If a force, \vec{F} = (- 2î	$+3\hat{\mathbf{j}}+\hat{\mathbf{k}})$, causes	s a displaceme	$\mathbf{nt} \ \overrightarrow{\mathbf{D}} = (\hat{\mathbf{j}} -$	$2\hat{i} + 4\hat{k}$), of an
	object, the work dor			•	, ,
	(A) 12 units	(B) - 4 units		1units	(D) zero
Q24.	An impulsive force	of 100 N acts or	a body for a	small time	e interval of (Δt)
	seconds. The change, in linear momentum of the body would be:				
	(A) $(100 \Delta t) \text{ N/s}$			$(100 \Delta t) N -$	
	(C) $(100 / \Delta t)$ N/s		(D)	$(100/\Delta t) N$	√ – s
Q25.	A body of mass M,		locity $\vec{V} = V\hat{\imath}$, h	oreaks up ir	nto 2 equal parts.
	If one part comes to have	rest and the oth	er part moves	with a velo	city $\overline{v'}$ we would
	(A) $\overrightarrow{v'} = \frac{v}{\sqrt{2}} \hat{\imath}(B) \overrightarrow{v'} =$	= Vĵ	(C) $\overrightarrow{v'} = 1$	2 <i>V ĵ</i>	(D) $\overrightarrow{v'} = 2V\hat{\imath}$

Q17. The radius of gyration of a uniform rod of length L about an axis passing

SECTION-B

This section consists of 24 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions is attempted, ONLY first 20 will be considered for evaluation.

	ONLY first 20 will l	be considered for	evaluation.		
Q26.	A river is flowing from west to east at a speed 15m/s. A boy on the south ban				
	the river, capable of swimming at 30m/s in still water, wants to swim, cross the				
	river in the shortest time. He should swim in the direction of.				
	(A) Due north		(B) 30^0 east of	north	
	(C) 30^0 west of north		(D) 60° east of	north	
Q27. A, B, C, and D at the points in a vertical line such tha				that AB=BC=CD. If a body	
	falls from rest at A, then the times of descent through AB, BC and CD are in the				
	ratio:				
	(A) $1:\sqrt{2}:\sqrt{3}$		(B) $\sqrt{2} : \sqrt{3} : 1$		
	(C) $\sqrt{3}:1:\sqrt{2}$. ,	1): $(\sqrt{3} - \sqrt{2})$	
Q28.	Two particles start from rest simultaneously and are equally accelerate				
	Throughout the motion, the relative velocity of one w.r.t. other is:				
	A. Zero	,	·		
	B. Non – zero and directed parallel to the acceleration				
	C. Non – zero and directed opposite to acceleration				
	D. Directed perpend	icular to the accele	eration		
Q29.	9. When a body moves with constant speed in a circular path, then:				
(A) Work done will be zero (B) Acceleration will be zero				on will be zero	
	(C) No force acts on a	ı body	(D) Its velocity	y remains constant	
Q30.	In circular motion:	circular motion:			
	` '		(B) radial velocity is zero(D) all the above		
	(C) body is in equilibrium				
Q31.	When we kick a stone, we get hurt. Due to which one of the following propert			e of the following properties	
	of the stone it happe				
		(B)Velocity			
Q32.	_	•	•	of mass 1/m times its mass,	
	then the part of its kinetic energy of moving body transferred to the stati				
	body is			4.00	
	$(A)\frac{m}{(1+m)^2}$	(B) 0	(C) 2	$(D)\frac{4m}{(1+m)^2}$	
Q33.	At a certain instant, a body of mass o.4 kg has a velocity of $(8\hat{i} + 6\hat{j})m/s$.			elocity of $(8\hat{\imath} + 6\hat{\jmath})m/s$. The	
	kinetic energy of the	e body is :			
	(A) 10J	` /	(C) 20J	(D) None of these	
Q34.			nas an extension	of 5cm. The work done in	
	extending it from 50				
	(A) 16J	(B) 8J	(C) 32J	(D) 24J	

	much smaller tha	n the radius of the ea	rth, then whi	ch one of the following is	
	correct?				
	$(A)d=\frac{h}{2}$	(B) $d = \frac{3h}{2}$	(C) $d=2h$	(D) d=h	
Q37.	A person can bala	ance easily a moving l	oicycle, but ca	nnot balance a stationary	
	bicycle. This states	ment is based upon :			
	` '	rinciple of linear mome			
	• •	rinciple of angular mon	nentum		
	(C) conservation p	=			
O20	(D) all of the above $A = A + BA^2 + A$. 4:. 4:	A D and C and constants	
Q38.	•		, t is time and	A,B and C are constants	
	the dimensional fo		(C) EN (OT OTE)	(D) [N (0) T 3]	
O20	(A) [M ⁰ LT ⁰]	` /	(C) [M°L°1]	(D)[M^0LT^{-3}]	
Q39.	Which quantity is dimension less (A) absolute error (B) mean absolute error				
	(C) relative error		(D) gross err		
040	What is the value	of $(\overrightarrow{A} \times \overrightarrow{R})$ $(\overrightarrow{A} - \overrightarrow{R})$?	(D) gross cri	01	
QTU.	(A) 0		(C) $A^2 + B^2 +$	2AB (D) None of these	
041.	, ,	onent of $3\hat{i} + 4\hat{j}$ along	` ′	271D (D) I tolle of these	
		$(B)^{\frac{3}{2}}(\hat{i}+\hat{j})$		$(D) \frac{7}{7} (\hat{\imath} + \hat{\imath})$	
042	L	L	2	2	
Q42.	_			ity $oldsymbol{v_0}$ and the remaining th velocity $oldsymbol{v_2}$ for the next	
		e average velocity aver			
	- ()	a average versery aver	_	` -	
	$(A) \frac{2v_0 (v_1 + v_2)}{2v_0 + v_1 + v_2}$		(B) $\frac{v_0(v_1+v_2)+2v_1v_2}{2(v_1+v_2)}$		
	$(C)^{\frac{v_0+v_1+v_2}{3}}$		(D) no	ne	
Q43.	A projectile can ha	A projectile can have the same range R for two angles of projection. If t_1 and t			
	be the time of flight in the two cases, then				
	$(A)t_1t_2 = \frac{2R}{g}$	$(B)t_1t_2 = \frac{R}{a} \tag{C}$	$C)t_1t_2 = \frac{R}{2a} ($	$(D)t_1t_2=0$	
Q44.	Angular velocity o	f second hand of a clo	ck is		
	$(A)\frac{\pi}{20}$ rad	$(B)\frac{\pi}{60}$ rad/s	$(C)\frac{\pi}{4\pi}$ rad/s	$(D)\frac{\pi}{20}$ rad/s	
Q45.		wo statements labeled	10		
	Assertion (A):Tota	l energy of a body may	be negative		
	Reason (R): kinetic	e energy of a body may	be negative.		
PA-II/P	HY-XI/SET-1			Page6of 8	

Q35. A body is projected with an escape velocity 11.2 km/s from the earth's surface. If

Q36. The change in the value of g at a height h above the surface of the earth is the

this case will be:

(A) 11.2 km/s

the body is projected in a direction 30° angle to the vertical, its escape velocity in

same as at a depth d below the surface of the earth. When both d and h are

(B) $11.2 \times \frac{1}{2} km/s$ (C) $11.2(\frac{\sqrt{3}}{2})km/s$ (D) None of these

Select the most appropriate answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A
- **(B)** Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- **(D)** A is false and R is also false.

Q46. Given below are two statements labeled as Assertion (A) and Reason (R)

Assertion (A):Truck and car are moving with same momentum, then truck has more kinetic energy

Reason (R): kinetic energy is directly proportional to mass when momentum constant. Select the most appropriate answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A
- **(B)** Both A and R are true but R is not the correct explanation of A.
- **(C)** A is true but R is false.
- **(D)** A is false and R is also false.

Q47. Given below are two statements labeled as Assertion (A) and Reason (R)

Assertion (A): If the ice on the polar caps of the earth melts, then length of day will increase

Reason (R): Moment of inertia of earth increases as ice on polar caps melts. Select the most appropriate answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A
- **(B)** Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- **(D)** A is false and R is also false.

Q48. Given below are two statements labeled as Assertion (A) and Reason (R)

Assertion (A): Relative velocity of geo stationary satellite w.r.t. earth is zero

Reason (R): They have same velocity at every instant.

- (A) Both A and R are true and R is the correct explanation of A
- (B) Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- **(D)** A is false and R is also false.

Q49. Given below are two statements labeled as Assertion (A) and Reason (R)

Assertion (A): Gravitational force is a conservative force.

Reason (R): Potential energy is only associated with conservative force.

Select the most appropriate answer from the options given below:

- (A) Both A and R are true and R is the correct explanation of A
- **(B)** Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- **(D)** A is false and R is also false.

SECTION C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions is attempted, ONLY first 5 will be considered for evaluation.

50. A ball rolls off the top of a stairway with a constant horizontal velocity u. If the steps are a meter high and b meter wide, the ball will just hit the edge of nth step if

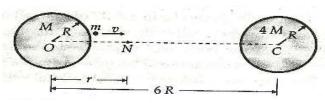
PA-II/PHY-XI/SET-1 Page7of 8

$$(A)n = \frac{2au^2}{gb^2}$$

$$(B)n = \frac{2au}{g}$$

$$(C)n = \frac{2au^3}{gb^2}$$

(A)
$$n = \frac{2au^2}{gb^2}$$
 (B) $n = \frac{2au^2}{g}$ (C) $n = \frac{2au^3}{gb^2}$ (D) $n = \frac{2au^2}{gb^3}$


51. Two uniform solid spheres of equal radii R, but mass M and 4M have a centre to centre separation 6 R, as shown in fig. The two spheres are held fixed. A projectile of mass m is projected from the second sphere of mass M directly towards the centre of the second sphere. The minimum speed v of the projectile so that it reaches the surface of the second sphere is

$$(A)\sqrt{\frac{GM}{R}}$$

(B)
$$\sqrt{\frac{3GM}{2R}}$$
 (C) $\sqrt{\frac{3GM}{R}}$ (D) $\sqrt{\frac{3G}{5R}}$

(C)
$$\sqrt{\frac{3GM}{R}}$$

(D)
$$\sqrt{\frac{3G}{5R}}$$

CASE STUDY:

Read the following paragraph and answers the questions:

A lift is a device that moves up and down inside a tall building and carries people

from one floor to another. There are three main types of elevators commonly used: traction with a machine room, machine-room-less traction, and hydraulic .If you stand on a scale in an elevator accelerating upward, you feel heavier because the elevator's floor presses harder on your feet, and the scale will show a higher reading than when the elevator is at rest. The force exerted by the scale is known as apparent weight; it does not change with constant speed. A man of mass 60 kg stands on a weighing scale in a lift .($g=9.8 \text{m s}^{-2}$

52. What would be the readings on the scale if the lift is moving (a) upwards with a uniform speed of 5 m s⁻¹.

(A) 60

(B) 91.8

(C)70

(D) 0

What would be the readings on the scale if the lift is moving downwards with a 53. uniform acceleration of 5.2 m s⁻².

(A) 60

(B) 28.7

(C)26

(D) 0

54. What would be the readings on the scale if the lift is moving upwards with a uniform acceleration of 5.2 m s⁻².

(A) 60

(B) 91.8

(C)90

(D) 89.4

What would be the reading if the lift mechanism failed and it hurtled down 55. freely under gravity.

(A) 60

(B) 70

(C) 0

(D) infinite

****** ALL THE BEST ******