Exam ID.		Candidates must write the Set No.
		on the title page of the OMR Sheet.

DAV PUBLIC SCHOOLS, ODISHA ZONE –I PA-II EXAMINATION, 2021-22

- Check that this question paper contains <u>8</u> printed pages.
- Set number given on the right hand side of the question paper should be written on the OMR SHEET by the candidate.
- Check that this question paper contains <u>55</u> questions.

CLASS – XI SUB: CHEMISTRY

Time :90 Minutes Maximum Marks: 35

General Instruction:

- 1. The Question Paper contains three sections.
- 2. Section A has 25 questions. Attempt any 20 questions.
- 3. Section B has 24 questions. Attempt any 20 questions.
- 4. Section C has 6 questions. Attempt any 5 questions.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

PA-II/CHEM-XI/SET-2 Page 1 of 8

SECTION A

This section consists of 25 multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted, ONLY first 20 will be considered for evaluation.

20 will be conside	ered for evaluat	ion.		
(B) 6.023 x 1 (C) 0.1 g of s	s of hydrogen ga 0 ²² molecules of	s. f nitrogen.		
	dration yield of en 100 g of cycl			e is 75%. The yield be:
(A) 82.35 g	(B) 61.	5 g (C	(2) 38.34 g	(D) 17.65 g
	of a 5 M solution of a 5 M solution	n is diluted to	1500 ml, what	t will be the molarity
(A) 1.5 M	(B) 1.6	6 M (C	C) 0.017 M	(D) 1.59 M
Q4. If the densignificant fi (A) 4.7 g (C) 4.680 g	-	(B	1, the mass of 1 3) 4680 x 10 ⁻³ g 0) 46.80 g	.5 ml solution in
(A)Total mass in product, the (B) Total mass proportions is (C) Amount oxygen) in extended (D) Amount	herefore it follows ss of reactants = s followed. of Fe_2O_3 can be excess.	ygen in reactary ys the law of contotal mass of princreased by taken	onservation of noroduct; therefore aking any one of the amoun	of iron and oxygen nass. re, law of multiple f the reactants (iron or t of any one of the
Q6. For principa (A) 3	al quantum num (B) 7	ber n = 4, total (C) 5	number of the (D) 9	orbitals having l = 3 is:
Q7. The specie	es which is not (B)Be ⁻	paramagnetic (C) Ne ²⁺		
-	f fourth orbit w	ould be:	S	-328 kJmol ⁻¹ . Hence (D) -1312kJmol ⁻¹
Q9. Which one o (A)Ni ³⁺	of the following io (B)Mn ³⁺	ons has electron (C)Fe ³⁺	nic configuration (D)C	

PA-II/CHEM-XI/SET-2 Page 2 of 8

Q10. The ionic ra	adii of N^{3-} , O^{2-} , F^{-} ,	Na ⁺ follow the ord	ler:	
(A) $N^{3} > O^{2} >$	$F > Na^+$	(B) $N^3 > Na^+ O^{2-} > (D) O^{2-} > F > Na^+ > (D) O^{2-} > F > Na^+ > (D) O^{2-} > (D) O^{2-$	F	
(C) $Na^+ > O^2 > 1$	$N^3 > F^-$	(D) $O^{2-} > F > Na^+ > 1$	N^{3-}	
Q11. Which is a	correct name acco	rding to IUPAC sy	ystem?	
(A) 4,5-Dimetl	hyl hexane	(B) 3-Ethyl-2-metl	hylpentane	
(C) 3,4-Dimeth	nylpentane	(D) 2-Ethyl-2-met	hylpentane	
	_	_	re 496, 737 and 786 kJ mo)l-
		tential of Al will be		
(A) 760 kJmol	(B) 575 kJm	100^{-1} (C) 801 kJm	ol ⁻¹ (D) 419kJmol ⁻¹	
Q13. In a period	ic table the basic c	haracter of oxides	· ·	
(A) increases f	rom left to right and	d decreases from top	p to bottom.	
` '	_	d increases from top	-	
* *	_	d increases from top		
(D) decreases	from left to right an	d increases from bo	ttom to top.	
Q14. Hydrogen b	oonds are formed i	in many compound	ds e.g., H ₂ O, HF, NH ₃ . The	
boiling point of	of such compounds	s depends to a larg	e extent on the strength of	
• •		• •	s: The correct decreasing	
	oiling points of abo	•		
$(A) HF>H_2O>1$		(B) $H_2O>HF>NH_3$		
(C) $NH_3>HF>1$	H_2O	(D) $NH_3>H_2O>HF$	i	
Q15. In PO ₄ ³ - io	n the formal charg	ge on oxygen atom	of P-O bond is:	
(A) + 1	(B) -1	(C) +0.75	(D)-0.75	
O16. Diamagneti	ic species are those	e which contain no	unpaired electrons. Which	1
	lowing are diamag		•	
	(B) N_2^{2-}		(D) 0 ₂	
Q17. XeF ₂ is isos	tructural with:			
(A) TeF_2	(B) ICl ₂ -	(C) SbCl ₃	(D) BaCl ₂	
-		(0) 50013	(D) Buc12	
Q18. Syngas is a		(C) CO +N	(D) CO + C	
(A) CO2+ H2	(B) $CO+H_2$	(C) CO+ N_2	(D) CO+ O_2	
Q19. TiH _{1.73} is an	n example of			
(A) Ionic hydride		(B) Covalent hydride		
(C) Interstitial	hydride	(D) Electron rich h	ıydride	
Q20. In which of	the following com	pounds carbon ex	hibit a valency of 4 but	
oxidation stat	-	-	v	
(A) CH ₃ Cl	(B) CHCl ₃	(C) CH_2Cl_2	(D) HCHO	
O21 CrO. hos t	$\mathbf{w}_{0}\left(-\mathbf{\Omega}_{-}\mathbf{\Omega}_{-}\right) \mathbf{h}_{0}\mathbf{n}\mathbf{d}\mathbf{s}$	Ovidation numbe	er of Cr in CrO ₅ is	
(A) + 5	(B) +3		(D) + 10	

same hybridisation state?					
(A) $CH \equiv C - C \equiv CH$ (C) $CH_2 = C = CH_2$	(B) $CH_3 - C \equiv C - CH_3$ (D) $CH_2 = CH - CH_2 - CH_3$				
Q23. The IUPAC name of the (A) 2-Methylbut-2-enoic acid (C) 3-Methylbut-2-enoic acid	` '	Š			
an unsaturated group, the i (A) (CH ₃) ₃ C-<(CH ₃) ₂ CH-<	CH-, CH ₃ -CH ₂ -, are attached to a benzene ring increasing order of positive inductive effect is CH ₃ -CH ₂ - (B) CH ₃ -CH ₂ -<(CH ₃) ₂ CH-<(CH ₃) ₃ CCH ₃ -CH ₂ - (D) (CH ₃) ₃ C-< CH ₃ -CH ₂ -<(CH ₃) ₂ CH	C-			
Q25. Which of the following is (A) Furan (B) Thiophen	s a benzenoid aromatic compound? ne (C) Pyridine (D) Aniline				
. , ,	SECTION D				
SECTION-B This section consists of 24multiple choice questions with overall choice to attempt any 20 questions. In case more than desirable number of questions are attempted. ONLY first 20 will be considered for evaluation.					
	certain mass of CaCO ₃ gave 11.2 dm ³ of CO ₂ ga	as at			
(A) 56g (B) 28g	quired to completely neutralize the gas is: (C) 42 g (D) 20g				
•	ment M is 53 in its oxide of molecular formula	l			
M_2O_3 Its atomic mass is about (A) 45 (B) 27	(C) 18 (D) 36				
_	and molecular mass of a compound are CH ₂ O and ll be the molecular formula of the compound? (C) C ₆ H ₁₂ O ₆ (D) C ₂ H ₄ O ₂	and			
	th associated with a ball of mass 1kg having ki	inetic			
energy 0.5J is: (A) 6.626 x 10 ⁻³⁴ m (C) 10.38 x 10 ⁻²¹ m	(B) 13.20 x 10 ⁻³⁴ m (D) 6.676 x 10 ⁻³⁴ A ⁰				
	umber of electrons that can be accommodated	in			
(A) 10 (B) 18	est principal quantum number is 4? (C) 36 (D) 54				
(B) Chlorine has less negative(C) Mercury and bromine are	rst ionisation enthalpy in the periodic table. ve electron gain enthalpy than fluorine.				

Q22. Which of the following compounds contain all the carbon atoms in the

Q32. An element belongs to 3 rd p of the following property will	~ -	-			
(A) Bad conductor of electricity (C) Solid, metallic	y (B) Liquid,	(B) Liquid, metallic (D) solid, non-metallic			
Q33. The shape of SF ₄ and XeF ₂ (A) trigonal bipyramidal and tri (B) see-saw and linear (C) T-shape and linear (D) Square planar and trigonal linear	igonal bipyramidal				
Q34. Which of the following com	npound contains ion	ic, covalent and co-ordinate			
bonds? (A) NaOH (B) NaCl	(C) NaCN	(D) NaNC			
Q35. In which of the following co	ompounds, an eleme	ent exhibits two different			
oxidation states. (A) NH ₂ OH (B) NH ₄ NO ₃	(C) N ₂ H ₄	(D) N ₃ H			
Q36. Identify disproportionation (A) $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ (C) $2F_2 + 2OH^- \rightarrow 2F^- + OF_2 + 1$	(B) $CH_4 + \frac{1}{2}$	$4C1_2 \rightarrow CC1_4 + 4HC1$ + $2OH^- \rightarrow NO_2^- + NO_3^- + H_2O$			
Q37. Consider the following read $x \text{ MnO}_4^- + y \text{ C}_2\text{O}_4^{2^-} + z \text{ H}^+ \rightarrow x \text{N}$ The values of x, y, z in the reaction (A) 5, 2 and 8 (C) 2,5 and 8	$4 \ln^{2+} + 2 y \text{CO}_2 + z/2 \text{ H}_2$				
Q38. Which is used as a modera (A) H ₂ O (B) Alum					
Q39. Which of the following seri (A) H ₂ O, SO ₃ , H ₃ O ⁺ (C) AlCl ₃ , SO ₃ NO ₂ ⁺	es contains only elec (B) NH ₃ , I (D) H ₂ O,C	H ₂ O,AlCl ₃			
Q40. Propanone and propanal at (A) Position isomer (C) Functional isomer	re pair of (B) chain is (D) Metam				
Q41. The structure of the isobuty (A) $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3 - C(CH_3)_2 - C(C)(CH_3)_2 CH - CH_2 - CH_3 - C(C)(CH_3)_2 CH_2 - CH_3 - CH_3 - CH_2 - CH_3$					
Q42. Hyper conjugation is most useful for stabilizing which of the following carbocation?					
(A) Methyl (B) Tert. butyl	(C) Neopentyl	(D) Isopropyl			

Q43. Identify the correct statement in the following:

- (A) Dimethyl ether and ethanol are chain isomers.
- (B) Ethanoic acid and methyl methanoate are position isomers
- (C) n-Butane and isobutane are functional isomers.
- (D) Propan-1-ol and propan-2-ol are position isomers.

Q44. Ionic species are stabilized by the dispersal of charge. Which of the following carboxylate ions is the most stable?

$$(B) CI - CH_2 - C - O^ (B) F - CH - C - O^-$$

$$(A) \begin{tabular}{ll} O & O & II & O & II & O & II & O & II & $I$$

$$_{(D)} \stackrel{F}{F} \subset H - \stackrel{0}{C} - o^{-}$$

Q45. Given below are two statements labelled as Assertion(A) and reason (R). Select the most appropriate answer from the options given below:

Assertion(A): Atomic mass of sodium is 23 u.

Reason (R): An atom of sodium is 23 times heavier than an atom of carbon-12 isotope.

- (A) Both A and R are true and R is correct explanation of A.
- (B) Both A and R are true but R is not correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

Q46. Given below are two statements labelled as Assertion(A) and reason (R). Select the most appropriate answer from the options given below:

Assertion(A): The energy of an electron is largely determined by its principal quantum number.

Reason (R): The principal quantum number (n) is a measure of the most probable distance of finding the electron around the nucleus.

- (A) Both A and R are true and R is correct explanation of A.
- (B) Both A and R are true but R is not correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

Q47. Given below are two statements labelled as Assertion(A) and reason (R). Select the most appropriate answer from the options given below:

Assertion(A): F is more electronegative than Cl.

Reason (R): F has higher electron affinity than Cl.

- (A) Both A and R are true and R is correct explanation of A.
- (B) Both A and R are true but R is not correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

Q48. Given below are two statements labelled as Assertion (A) and reason (R). Select the most appropriate answer from the options given below:

Assertion (A): The sulphur in SO_2 is sp^2 hybridized.

Reason (R): SO₂ has linear electron pair geometry.

- (A) Both A and R are true and R is correct explanation of A.
- (B) Both A and R are true but R is not correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.
- Q49. Given below are two statements labelled as Assertion(A) and reason (R). Select the most appropriate answer from the options given below:

Assertion(A): Heterolytic bond cleavage readily occurs in polar covalent bonds. **Reason (R):** Heterolytic bond fission occurs in such a way that the shared pair of electrons goes with one atom.

- (A) Both A and R are true and R is correct explanation of A.
- (B) Both A and R are true but R is not correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.

SECTION-C

This section consists of 6 multiple choice questions with an overall choice to attempt any 5. In case more than desirable number of questions are attempted, ONLY first 5 will be considered for evaluation.

- Q50. If 30 mol of H₂ and 20 mol of O₂ react to form water, what is left at the end of the reaction?
 - (A) 10 mol of H_2 (B) 5 mol of H_2 (C) 10 mol of O_2 (D) 5 mol of O_2
- Q51. What is the mass percentage of carbon in carbon dioxide?
 - (A) 0.034%
- (B) 27.27%
- (C) 3.4%
- (D) 28.7%
- Q52. Which one of the following statements is correct?
 - (A) Melting point and boiling point of HI are greater than those of HF.
 - (B) Boiling point of HI is less than that of HF but melting point of HI is greater than that of HF.
 - (C) Boiling point of HI is greater than HF but melting point of HI is less than that of HF.
 - (D) Melting point and boiling point of HI are less than that of HF.

CASE1: Read the passage given below and answer the following questions 53-55 In chemistry, molecular orbital theory is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. Molecular Orbital Theory is primarily used to explain the bonding in molecules that cannot be explained by Valence Bond Theory. *Molecular orbital*

PA-II/CHEM-XI/SET-2 Page 7 of 8

theory is more powerful than valence-bond theory because the orbitals reflect the geometry of the molecule to which they are applied.

Molecular orbital theory was developed in the years after valence bond theory had been established (1927), primarily through the efforts of Friedrich Hund, Robert Mulliken, John C. Slater, and John Lennard-Jones. MO theory was originally called the Hund-Mulliken theory. According to physicist and physical chemist Erich Huckel, the first quantitative use of molecular orbital theory was the 1929 paper of Lennard-Jones. By 1933, the molecular orbital theory had been accepted as a valid and useful theory.

The following questions are multiple choice questions. Choose the most appropriate answer:

Q53. Arrange the following molecules in decreasing bond length.

(A)
$$O_2 > O_2^- > O_2^+ > O_2^{2^-}$$

(C) $O_2^{2^-} > O_2^- > O_2^+ > O_2$

(B)
$$O_2^{2-} > O_2^{-} > O_2 > O_2^{+}$$

(C)
$$O_2^{2-} > O_2^{-} > O_2^{+} > O_2$$

(D)
$$O_2^- > O_2^+ > O_2^{2-} > O_2$$

Q54. Arrange the following molecules in the order of increasing stability.

(A)
$$N_2^+ < N_2 < N_2^- < N_2^2$$

(B)
$$N_2^{2-} < N_2^{-} < N_2 < N_2^{+}$$

(C)
$$N_2^{2-} < N_2^{-} = N_2^{+} < N_2$$

(D)
$$N_2 < N_2^+ = N_2^- < N_2^{2-}$$

Q55. Choose the incorrect statement from the following options.

- (A) In bonding molecular orbital, electron density is low in the region the nuclei of bonded atoms
- (B) The energy of antibonding molecular orbital is higher than that of atomic orbitals from which it is formed
- (C) Every electron in bonding molecular orbital contributes toward stability of the molecule
- (D) Antibonding takes place when lobes of atomic orbitals have different signs.

***** ALL THE BEST *****

PA-II/CHEM-XI/SET-2 Page **8** of **8**